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Abstract
Virtual memory translation has become a key performance

bottleneck of memory-intensive workloads in virtualized

cloud environments. On the x86 architecture, a nested trans-

lation needs to sequentially fetch up to 24 page table en-

tries (PTEs). This paper presents Direct Memory Translation

(DMT), a hardware-software extension for x86-based virtual

memory that minimizes translation overhead while main-

taining backward compatibility with x86. In DMT, the OS

manages last-level PTEs in a contiguous physical memory

region, termed Translation Entry Areas (TEAs). DMT estab-

lishes a direct mapping from each virtual page in a Virtual

Memory Area (VMA) to the corresponding PTE in a TEA.

Since processes manage memory with a handful of major

VMAs, the mapping can be maintained per VMA and ef-

fectively stored in a few dedicated registers. DMT further

optimizes virtualized memory translation via guest-host co-

operation by directly allocating guest TEAs in physical mem-

ory, bypassing intermediate virtualization layers. DMT is

inherently scalable—it takes one, two, and three memory

references in native, virtualized, and nested virtualized se-

tups. Its scalability enables hardware-assisted translation for

nested virtualization. Our evaluation shows that DMT signif-

icantly speeds up page walks by an average of 1.58x (1.65x

with THP) in a virtualized setup, resulting in 1.20x (1.14x

with THP) speedup of application execution on average.

CCS Concepts: • Software and its engineering→ Oper-
ating systems; Virtual memory; • Computer systems
organization→ Architectures.

Keywords: Cloud Computing, Virtualization, Virtual Mem-

ory, Address Translation
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1 Introduction
Virtual memory translation has become amajor performance

bottleneck of memory-intensive workloads, especially in vir-

tualized cloud environments. Upon a TLB miss, a nested

address translation on the x86 architecture needs to perform

a two-dimensional page table walk, which requires up to 24

sequentialmemory accesses. It is reported that nested transla-

tion can takemore than 50% of the execution time ofmemory-

intensive workloads in virtualized environments [5, 20, 45].

With the rapid growth of memory capacity and irregular

memory access patterns of emerging workloads, TLB misses

are becoming more frequent, with increased overhead.

Recent support for five-level page tables in new proces-

sors [30, 81] may further slow down memory translation—a

nested translation would require up to 35 sequential mem-

ory accesses. In addition, new cloud deployment modes

for multi-level virtualization require higher dimensional

page table walks. For example, nested virtualization [11, 28]

runs hypervisors inside virtual machines (VMs). Currently,

nested virtualization is supported by shadow paging on top

of nested translation, bearing the known cost of frequent VM

exits [1, 11]. However, extending hardware-assisted transla-

tion to three (or more) dimensions of page tables is untenable.

To address the pressing overhead of memory translation,

advanced software and hardware designs are proposed [3,

4, 6, 10, 15, 17, 19, 20, 25, 26, 29, 37–40, 43–47, 55, 56, 58–

61, 63, 64, 80, 84]. However, translation overhead remains

substantial in virtualized environments. Existing designs that

reduce page table walks (e.g., using huge pages [35, 40, 55,

56]) cannot eliminate sequential memory accesses. Transla-

tion caching and prefetching [9, 39, 44–46, 63, 84] can save

(or hide) memory access overhead; however, even with per-

fect caching, the translation still needs to sequentially fetch

tens of Page Table Entries (PTEs) from the cache hierarchy,

which takes orders of magnitude more cycles than a TLB hit.
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This paper presents Direct Memory Translation (DMT), a

hardware-software extension for x86-based virtual memory

that minimizes address translation overhead while maintain-

ing backward compatibility with x86. DMT co-designs the

translation hardware together with OS memory manage-

ment to reduce translation overhead to what is absolutely

necessary—directly fetching the translation that maps a vir-

tual page to the corresponding physical page frame (in x86,

the translation is stored in the last-level PTEs of radix page

tables). DMT achieves only one, two, and three memory ref-

erences in native, virtualized, and nested virtualized setups.

The high-level idea of DMT is to establish a direct map-

ping from each virtual page to the corresponding last-level

PTE that stores the translation. The mapping can be effec-

tively maintained at the granularity of Virtual Memory Areas

(VMAs). VMAs are contiguous virtual memory regions in

process address space; they are mostly allocated at the ini-

tialization time and are infrequently changed at runtime.

DMT manages the mapping from each VMA to a contiguous

physical memory region (termed TEA, or Translation Entry

Area) that stores last-level PTEs of pages in the VMA in or-

der. Similar to VMAs, TEAs are managed by the OS. Since

processes manage memory with a handful of major VMAs

(§2.3), the VMA-to-TEA mapping can be effectively stored in

a few dedicated registers (16 in our implementation). In case

that processes have more than 16 VMAs, DMT merges adja-

cent VMAs and/or maps the largest VMAs in the available

registers. With the mapping in place, DMT directly locates

the last-level PTE in a TEA for a given page in a VMA.

DMT is inherently more scalable than existing x86 radix-

tree based translation design, as it directly fetches last-level

PTEs, without sequential page table work or resorting to

page walk caches. Note that such property also exists in

hash-based translation [64–66, 69, 80]. DMT has a few ad-

vantages over hash-based designs: (1) DMT uses fixed-size

TEAs instead of hash tables, which greatly simplifies the

design. The rationale is that VMAs usually remain static

after creation; enlarging and shrinking VMAs that require

costly TEA modifications are rare. Hash-based designs, on

the other hand, cannot know the number of PTEs apriori

and thus need to resize the hash tables as PTEs are added

or removed; (2) DMT avoids hash collisions [80] and/or re-

duces parallel lookups [64, 66]; and (3) Although both TEAs

and hash tables need contiguous physical memory, DMT is

more flexible because it can split its tables when contiguous

memory is unavailable or fall back to the baseline design.

We further optimize DMT for virtualized environments.

Specifically, DMT employs guest-host cooperation (aka par-

avirtualization) to directly allocate guest TEAs in physical

memory—guest TEAs always reside in a contiguous physical

memory region of the host. We refer to the optimized de-

sign as pvDMT, which bypasses intermediate virtualization

layers and thus accelerates multi-dimensional page walks.

Compared to hashed page tables [80], pvDMT reduces the

number of sequential steps from 1, 3, and 7 to 1, 2, and 3

in native, virtualized, and nested virtualized setups, respec-

tively. To ensure isolation and prevent side channels, pvDMT

restricts that a guest can only map its virtual pages to its

own TEAs (instead of arbitrary physical addresses), with a

mechanism similar to Intel EPTP switching [32]. As DMT

scales linearly with the levels of virtualization, it enables

hardware-assisted translation for nested virtualization.

We prototype DMT based on the x86 architecture and

Linux/KVM. DMT requires simple hardware support that

equips each processor core with 16 registers and simple PTE

fetch logic. The hardware support is similar to ASAP PTE

prefetcher [45], which is backward compatible with x86 and

thus considered practical. DMT supports all existing virtual

memory features, such as huge pages and page sharing, and

is transparent to x86 binaries. We evaluate DMTwith a range

of data-intensive workloads and compare DMT with four

other advanced designs, including FPT [59], ECPT [64, 66],

Agile Paging [20], and ASAP [45]. Our results show that

pvDMT can effectively speed up page table walks by 1.58x

(1.65x with THP) in a virtualized environment, resulting in

1.20x (1.14x with THP) speedup of workload execution on

average; it substantially outperforms other advanced designs

like ECPT [66] by 1.16x–1.31x (1.25x–1.51x with THP) in

a virtualized environment. DMT’s performance gains on

nested virtualization are more substantial.

In summary, the paper makes the following contributions:

• Directmemory translation (DMT), a practical hardware-

software extension for x86-based virtual memory to

minimize address translation overhead. DMT co-designs

the translation hardware andOSmemorymanagement

so that sequential page table walks are replaced by di-

rectly fetching last-level PTEs.

• An optimization of DMT in virtualized setups using

paravirtualization that further reduces translation over-

head to two memory references for virtualization and

three for nested virtualization.

• An implementation of DMT on x86 and Linux/KVM.

The DMT prototype and other artifacts are available

at: https://github.com/xlab-uiuc/dmt.

2 Background
2.1 Address Translation in Virtualized Clouds
In this section, we provide a brief overview of the existing
page table structure, the architectural support for virtualized

memory, and the design for nested virtualization.

2.1.1 Radix Page Tables. Radix page table is the de facto
design of most current architectures, which organizes the

page table entries (PTEs) in a multi-level radix tree. Cur-

rently, the x86-64 architecture implements a 4-level tree. To

translate a memory address upon a TLB miss, the memory

management unit (MMU) walks over each level of the tree
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Figure 1. Address translation in a native environment.
DMT directly fetches the last-level entry (highlighted).

sequentially, as shown in Figure 1. Therefore, in the worst

case, a page table walk requires four sequential memory ac-

cesses. x86-64 supports huge pages of 2MB and 1GB. For

huge pages, the translation is shortened by one or two levels.

To accommodate emerging terabyte-scale memory capac-

ity, Intel extends the radix page table to five levels [30, 81],

which further increases the page-table walk cost.

2.1.2 Virtualized Memory Translation. Virtualization
significantly enlarges memory translation overhead. A guest

OS manages its page table independently from the host (the

hypervisor) and runs on virtualized physical memory. There-

fore, a guest virtual address (gVA) needs to first be translated

into a guest physical address (gPA) which is further translated
into a host physical address (hPA).
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Figure 2. Two-dimensional (2D) address translation in
a virtualized environment. DMT aims to fetch only two

translation entries (highlighted).

Modern architectures support hardware-assisted virtu-

alized memory translation, aka nested paging (e.g., Intel

EPT [32] and AMD NPT [16]). Nested paging uses two layers

of page tables: each guest OS maintains a guest page table
(gPT) that maps gVAs to gPAs, and the hypervisor manages

a host page table (hPT) per guest that maps gPAs to hPAs.

To translate a gVA to hPA upon a TLB miss, the hardware

issues a two-dimensional (2D) page table walk, as illustrated

in Figure 2. We use circular boxes to denote levels of the

host page table (hL𝑖 ) and square boxes to denote levels of

the guest page table (gL𝑖 ). First, to obtain the gPA from gVA,

the hardware needs to walk over each level of the gPT, from

gL4 to gL1. To access each gL𝑖 , the hardware needs to know

the hPA of gL𝑖 by referring to the hPT, from hL4 to hL1. The

above process corresponds to Steps 1–20 in Figure 2. Second,

to obtain the hPA from the gPA, the hardware needs to fur-

ther walk over the hPT (Steps 21–24 in Figure 2). For 4-level

radix page tables, the 2D page table walk requires up to 24

memory references, as shown in Figure 2. With 5 levels, it

takes up to 35 memory references.

Even when MMU caches and huge pages are used, the 2D

page table walks remain expensive and can take more than

50% of the execution time of memory-intensive workloads [5,

20, 45].

An alternative to hardware-assisted translation is shadow

paging [20, 74], where the hypervisor builds a shadow page
table (sPT) by combining gPT and hPT. While a guest OS

manages gPT, the hypervisor maintains the sPT to map gVA

to hPA, and the translation takes a native page walk (§2.1.1).

However, any update of the gPT must be synchronized with

the sPT, causing frequent VM exits [1, 2]. It is known that

shadow paging incurs substantial overhead, e.g., it is reported

that hardware-assisted translation speeds up applications up

to 48% over shadow paging [72].

2.1.3 Nested Virtualization. Nested virtualization [11]

runs hypervisors inside virtual machines (VMs), creating

multiple levels of virtualization. It is widely offered by cloud

vendors [7, 14, 82] and enables many use cases [11, 28, 42,

83]. For example, Windows 10/11 runs a type-1 hypervi-

sor (Hyper-V) for kernel integrity [50] and Linux interop-

erability [49]; therefore, nested virtualization needs to be

supported for Windows 10/11 on a VM [50, 73].

Currently, no architectural support is available for mem-

ory translation of nested virtualization. One main reason is

that, with the current x86 design, nested virtualized mem-

ory translation would require a three-dimensional (3D) page

table walk, which has an untenable overhead.

𝕃
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Physical Addr.

𝕃
1
Physical Addr.

𝕃
0
Physical Addr.
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𝕃
2
PT
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0
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Figure 3. Address space
and page tables in nested
virtualization.

Now, nested virtualiza-

tion is implemented by

mapping the three levels

of page tables onto the

two levels of nested pag-

ing (§2.1.2), where the page

tables of the two hypervi-

sors are compressed into

one sPT, as shown in Fig-

ure 3. The L0 hypervisor

maintains an sPT thatmaps

L2PA to L0PA, combined

from L1PT and L0PT. To translate an L2VA into L0PA needs

a 2D page table walk across L2PT and sPT, so that the L2VA

is translated to L2PA, then to L0PA. The implementation

uses a combination of nested paging and shadow paging to

accommodate three page tables. Hence, it suffers from the

overheads caused by both.
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tion time of the native environment. The page-table walk
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2.2 Translation Overhead in Virtualized Clouds
Figure 4 shows the address translation overhead of native,

virtualization (including both nested paging and shadow

paging), and nested virtualization on an x86 server machine,

respectively, under various workloads. The measurement

methodology and the machine configuration are detailed in

§5. Compared with the native environment, virtualization

increases the execution time by 1.46x on average, due to

the overhead of a two-dimensional (2D) page table walk

(§2.1.2). Nested virtualization further increases execution

time by 4.13x on average. Specifically, on average, the page

table walk overhead of native, virtualization, and nested

virtualization are 21%, 43%, and 48%. Nested virtualization

incurs an additional overhead of sPT (§2.1.3).

To quantify the sPT overhead, we compare the execution

time in the virtualized environment, using hardware-assisted

nested paging and shadow paging, respectively. On average,

shadow paging increases the total execution time by 1.39x

compared to nested paging, even though the page table walk

is simplified (28% page table walk overhead).

In short, address translation overhead in virtualized en-

vironments, including both single-level and nested virtual-

ization, is excessive for memory-intensive workloads. The

overhead is expected to be higher with 5-level page tables.

2.3 Virtual Memory Area
VMA is an OS abstraction of contiguous regions in the virtual

address space of a process. Each VMA contains a set of virtual

pages with the same protection, representing a local data

section (e.g., code, data, heap, stack, or a memory-mapped

file) [22]. It has a base virtual address and size of the mapped

region, along with other metadata. Collectively, VMAs of a

process constitute the application’s working set [25].

There are typically a few hundred VMAs in a modern

process. On the other hand, it is reported that only a hand-

ful of them are of significant size and are frequently ac-

cessed [25, 45]. To validate this observation, we measure

VMA characteristics of different applications as well as the

SPEC CPU 2006 and 2017 benchmarks. Table 1 and Figure 5

Table 1. VMA characteristics of various workloads: “To-
tal” number of VMAs, the number of VMAs that cover 99% of

Total (“99% Cov.”), and the number of VMA “Clusters” with

small bubbles of less than 2% in total to cover 99% of Total

(Memcached’s 778 VMAs can be covered by two clusters).

Workload (WL) Total 99% Cov. Clusters

BTree 109 2 2

Canneal 116 2 2

Graph500 105 1 1

GUPS 103 1 1

Redis 182 6 6

XSBench 111 1 1

Memcached 1,065 778 2

SPEC CPU 2006 (30 WLs) 18–39 1–14 1–8

SPEC CPU 2017 (47 WLs) 24–70 1–21 1–12
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Figure 5. CDFs of the three VMA characteristics in
Table 1 of SPEC CPU 2006 and 2017 benchmarks. (con-
taining 30 and 47 workloads, respectively).

show the measured VMA characteristics. Our results validate

the reported observation in most workloads. In all workloads

except Memcached and two workloads in the SPEC CPU

2017 benchmark (548.exchange2_r and 648.exchange2_s), 16

VMAs cover 99% of the working set. We observe that the

heap VMA covers most of the working set. The two SPEC

CPU 2017 workloads have 20 and 21 VMAs respectively,

while Memcached has 778 VMAs. Despite the large number

of VMAs, we observe that those VMAs are close to each other

in the virtual address space, with small bubbles in between

(e.g., less than 16KB in Memcached). If we cluster adjacent

VMAs with an allowance of 2% of bubbles in total, 99% of

the working set can be covered by less than 12 VMA clusters

in all the workloads. Hence, DMT works at the granularity

of VMAs or VMA clusters.

3 Direct Memory Translation
Direct Memory Translation (DMT) is a hardware-software

extension for x86-based virtual memory to minimize address

translation overhead while retaining backward compatibility

with the x86 architecture. DMT reduces translation overhead

to what is necessary—directly fetching the last-level PTEs of

the x86 radix page tables without sequentially walking the

page tables or resorting to page walk caches. The last-level

PTE contains the translation that maps a virtual page to the

290



Direct Memory Translation for Virtualized Clouds ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

PTE 1

Page 1

Page 2

Page N

PTE 2

PTE N

Virtual Memory Physical Memory
V

M
A

 
1

V
M

A
 
2

T
E

A
 
1

T
E

A
 
2

…

…

Figure 6. Basic idea of direct memory translation. Each
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physical page frame. DMT can achieve one, two, and three
memory accesses in native, virtualized, and nested virtual-

ized setups (with paravirtualization-based optimizations).

The high-level idea is to establish a direct mapping from

each virtual page to the corresponding last-level PTE in phys-

ical memory. DMTmaintains the mapping based on the VMA

abstraction (§2.3), because (1) processes manage memory

with a handful of VMAs (§2.3) and (2) VMAs are mostly allo-

cated at the initialization time and are infrequently changed

at runtime. Since each VMA is a contiguous virtual memory

region consisting of multiple virtual pages, DMT maps the

VMA to a contiguous physical memory region containing

the last-level PTEs of the virtual pages in the VMA. We term

the contiguous physical region Translation Entry Area (TEA).
The size of a TEA is orders of magnitude smaller than its

corresponding VMA, in the same scale as how a PTE size

compares to page sizes; hence, the contiguity requirement of

TEA is viable (discussed in §7). Figure 6 illustrates the direct

VMA-to-TEA mappings established by DMT.

The VMA-to-TEA mapping can be efficiently stored in a

few dedicated hardware registers (§4.1). These registers are

a part of the task state—during a context switch, registers

of the new process are reloaded. Our implementation uses

16 registers, which is sufficient for most applications (§2.3).

In case processes have more than 16 VMAs, DMT either

maps the largest VMAs in the available registers or clusters

adjacent VMAs with bubbles in the TEA (§4.2).

With the VMA-to-TEA mapping in place, DMT directly

locates the last-level PTE for a given virtual address (VA).

Figure 7 illustrates the translation procedure: 1 with the

VMA base address, DMT calculates the virtual page number

(VPN) offset of the VA inside the VMA; 2 with the TEA

base address, DMT indexes the target PTE using the VPN

offset. As such, in the native case, DMT always takes only

one memory reference to fetch the last-level PTE.

A conscious design principle of DMT is to simplify hard-

ware translation by co-designing OS memory management

for TEAs. This principle makes DMT backward-compatible

Page

VPN

1 2

PTE

V
M

A

TEA

Page offset

PFN Page offset

VA

PA

Base
addr

Base
addr

VMA
offset

Figure 7. Direct memory translation procedure. DMT

directly fetches the last-level PTE of the virtual page based

on the VMA-to-TEA mapping.

with x86 and thus avoids disruptive changes to MMUs, page

tables, and virtual memory abstractions. The design makes

the right tradeoffs: (1) VMAs mostly remain static after cre-

ation; enlarging and shrinking VMAs that require OS in-

volvement for TEA modifications are rare; (2) the OS is in

the right position to dynamically merge or split TEAs, based

on memory contiguity or other policies.

Conceptually, DMT resembles the translation using a lin-

ear page table [41] which stores all PTEs in a single array

indexed by the VPN, where each TEA is analogous to a linear

page table of the VMA. Managing TEAs at the granularity of

VMAs solves the space inefficiency of traditional linear page

tables that map to the entire process address space. Com-

pared to hash-based translation, the DMT design greatly sim-

plifies the translation hardware; for example, DMT avoids

hash collisions [80] and parallel lookups [64]. Moreover, it is

compatible with the current x86 architecture and can always

fall back to the default translation mechanism.

Note that DMT does not create additional copies of PTEs.

Hence, PTE access and dirty bits work in the same way as

the existing system, with no race condition. For the same

reason, it does not incur TLB shootdown due to TEA invali-

dations. DMT does not prefetch PTEs either. Prefetching is

less effective in virtualized environments. A large number

of PTEs may cause cache contention. More importantly, the

translation still needs to fetch many PTEs from the cache

hierarchy sequentially with substantial overhead (§6.2.2).

3.1 DMT for Virtualization
DMT can be directly applied to virtualized environments, as

shown in Figure 8. DMTwould take threememory references

to translate a guest virtual address (gVA) to the host physical

address (hPA). The translation procedure is as follows (we

use prefixes “g” and “h” to refer to the guest and the host,

respectively): (1) DMT calculates the guest physical address

(gPA) of the last-level guest PTE (gPTE) based on the gVMA-

to-gTEA mapping; it then translates the gPA to the hPA

of the gPTE using the hVMA-to-hTEA mapping based on
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gTEA

hTEA

gVMA

gTEA

Guest Virtual

Guest Physical

(hVMA)
Host Physical

Figure 8. DMT for virtualized environments (solid line:

VMA-to-TEA mapping; dashed line: VM address mapping).

With pvDMT, gTEAs are contiguous in the host physical
memory space and do not need to be contiguous in the guest
physical memory space.

the host PTE (hPTE); (2) DMT fetches the gPTE in physical

memory and obtains the gPA of the target data page; and

(3) DMT finds the hPA of the target data page using the

corresponding hPTE via the hVMA-to-hTEA mapping.

The above procedure achieves the best-case scenario as

hash-based designs [66, 80] without hash collisions and paral-

lel lookups, e.g., Nested ECPT [66] also take three sequential

accesses but multiple (up to 81) parallel ones.

Paravirtualization. We further optimize DMT for vir-

tualized environments to only two memory references with

guest-host cooperation (aka paravirtualization). The opti-

mized DMT, named pvDMT, allocates gTEAs directly in the

host physical memory—gTEAs always reside in contiguous

host physical memory regions managed by the hypervisor.

With pvDMT, the gVMA-to-gTEAmappings are built directly

from gVA to hPA, bypassing the indirection in the guest

physical address space; the host maintains hVMA-to-hTEA

mappings in the same way as in the native case (Figure 6).

An hVMA is the hypervisor’s VMA corresponding to the

guest physical address space of a virtual machine. Note that

pvDMT does not require gTEA to be placed in contiguous

guest physical memory space.

Essentially, pvDMT fetches only two PTEs: (1) the last-

level gPTE that maps gVA to the gPA via the gVMA-to-gTEA

mapping, and (2) the last-level hPTE that maps the gPA

to the hPA via the hVMA-to-hTEA mapping. These two

PTEs are the ones highlighted in Figure 2. pvDMT brings

substantial performance advantages over the state of the art

in virtualized environments, where PTEs are harder to cache

compared with the native environment.

Note that pvDMT needs to be carefully designed to ensure

isolation. Our design restricts that a guest can only map its

virtual pages to its own TEAs using a mechanism similar to

Intel EPTP switching, eliminating side channels (see §4.5.2).
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Figure 9. DMT for nested virtualization (solid line: VMA-

to-TEA mapping; dashed line: VM address mapping). With

pvDMT, L1TEAs and L2TEAs are contiguous in L0 physical

memory space and do not need to be contiguous in the L1

and L2 physical memory space.

3.2 DMT for Nested Virtualization
The idea of DMT (including pvDMT) can further be applied

to nested virtualization, as shown in Figure 9. In the case of

pvDMT, in nested virtualization, the TEAs at L2, L1, and L0

are all allocated in contiguous host physical memory regions.

As a result, pvDMT takes at most three memory references

to translate an L2VA to L0PA, with the following procedure:

(1) DMT fetches the L2PTE based on the L2VMA-to-L2TEA

mapping and then translates L2VA to L2PA; (2) DMT fetches

the L1PTE based on the L1VMA-to-L1TEA mapping and

then translates L2PA to L1PA; and (3) DMT obtains L0PA.

Since pvDMT scales linearly with the levels of virtual-

ization, it can enable hardware-assisted address translation

for nested virtualization. The hardware-assisted translation

could eliminate the major overhead of nested virtualization

caused by shadow paging for synchronizing the L1 and L0

page tables (§2.1.3). Note that hardware-assisted translation

for nested virtualization is untenable in traditional radix-tree

based design or the recent ECPT design, both of which takes

an excessive number of memory accesses for single-level vir-

tualization already (24 sequential accesses with radix page

tables and 81 parallel accesses with Nested ECPT).

4 Design and Implementation
DMT can be practically supported on modern architectures

and operating systems with simple hardware extensions.

The hardware extension includes a set of registers for main-

taining VMA-to-TEA mappings and simple translation logic

in MMU for fetching last-level PTEs (§4.1). The hardware

extension is similar to the one in the ASAP prefetcher [45].

The main effort of enabling DMT is to design and im-

plement the OS support for (1) dynamically managing the

VMA-to-TEAmappings (§4.2), (2) effectively managing TEAs

(§4.3), (3) supporting modern virtual memory features such

as huge pages (§4.4), and (4) virtualization support and the
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Figure 10. Overview of the DMT hardware extension.

paravirtualization-based optimization (pvDMT) for both single-

level and nested virtualization (§4.5). We prototype the OS

support for DMT on top of the Linux kernel v5.15.0, referred

to as DMT-Linux (§4.6). Our experience shows that DMT-

Linux can be practically implemented.

4.1 Hardware Extension
Figure 10 depicts the hardware extension required by DMT,

named DMT Fetcher. A DMT fetcher includes a set of ded-

icated registers and fast translation logic. It co-exists with

the current x86 page table walker. The DMT fetcher is com-

patible with the x86 architecture and works with existing

architecture structures. The TLB, x86 page table walker, and

MMU caches (e.g., page walk caches) are untouched.

The DMT fetcher maintains a number of registers (16 in

our implementation, §5). Each register stores a VMA-to-TEA

mapping. These registers are available for each hardware

thread and are exposed to the OS as part of the task state.

The registers are updated by the OS on events like context

switches and interrupts in virtual machines.
1

Upon a TLB miss, a page table walk request is handled by

the DMT fetcher or falls back to the x86 page table walker,

depending on whether the requested address is covered by

the mappings in the registers. If the corresponding VMA-

to-TEA mapping is present in a register, the DMT fetcher

directly locates the last-level PTE (§3). We expect that 99+%

of the page table walk requests are served by the DMT fetcher

because a handful of VMAs or VM clusters typically cover

99% of the memory footprint of data-intensive workloads

(see §2.3). DMT dynamically clusters adjacent VMAs for

workloads that have large numbers of VMAs (§4.2).

Different fromASAP [45] that prefetches the last two levels
of PTEs into the cache hierarchy, DMT locates only the last-

level PTEs. It does not bring upper-level PTEs into CPU

caches and thus consumes less memory bandwidth.

The hardware support for virtualization (and nested vir-

tualization) shares the same principles (described in §4.5).

1
When KVM handles external interrupts, VM exits may be triggered to

switch from the guest to the host. The registers need to be reloaded [32]. On

a multi-core system, IPIs are required to update registers on remote cores.
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Figure 11. The VMA-to-TEA mapping can be dynami-
cally merged (§4.2.1) and splitting (§4.2.2).

4.2 VMA-to-TEA Mapping Management
The OS (i.e., DMT-Linux) manages the VMA-to-TEA map-

pings and stores them in the DMT registers (§4.1). For each

process, DMT-Linux sorts the VMAs in descending order

based on their sizes and stores mappings that cover the

largest VMAs in the registers. DMT-Linux prioritizes storing

large VMAs in registers rather than hot VMAs. Large VMAs

are typically for heap and memory-mapped regions that are

the primary causes of page table walks. Small but hot VMAs

mostly represent dynamically linked libraries and the stack,

which are frequently accessed and rarely cause TLB misses

due to high temporal locality [45].

Managing VMA-to-TEA mappings needs to address the

following challenges: (1) there can be many more VMAs (e.g.,

Memcached in Table 1) than the number of DMT registers, so

per-VMA mapping may not reach a high coverage; (2) given

that TEA requires contiguous memory space, it could be

difficult to allocate a large TEA in highly fragmented mem-

ory; and (3) mapping management needs to accommodate

potential changes of VMAs.

4.2.1 MergingVMA-to-TEAMappings. DMT-Linuxmay

merge mappings of closely located VMAs to increase the

memory coverage of the registers, as shown in Figure 11(a).

Upon creating a new mapping, DMT-Linux checks whether

the target VMA can be clustered with the adjacent VMAs.

DMT-Linux uses a configurable threshold 𝑡 to make the de-

cision based on the ratio of the bubbles (𝑡 is set to 2% by

default). If the bubble ratio resulting from the merging is

calculated to be below 𝑡 , DMT-Linux clusters the two VMAs

and merges their mappings. This process is performed itera-

tively until the ratio is larger than 𝑡 . The merging involves

TEA expansion (§4.3) that first tries to expand a TEA in place.

If successful, the other TEA is migrated to the expanded TEA.

If the in-place expansion fails, it allocates a new TEA and

migrates the original TEAs to it.

4.2.2 Splitting VMA-to-TEA Mapping. The size of a

TEA is orders of magnitude smaller than the size of the
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corresponding VMA (a 4KB page of TEA covers 2MB VMA).

However, an allocation of TEA for a large VMA or VMA clus-

ter can fail due to highly fragmented memory. If the memory

allocator fails to allocate a TEA, DMT-Linux splits the TEA

using multiple mappings to cover the VMA, as shown in

Figure 11(b). Specifically, it uses two mappings, each corre-

sponding to half of the original VMA. The splitting iterates

until the TEA allocation succeeds. Note that after splitting,

the VMA can be removed from the hardware register and be

replaced by a larger VMA.

4.2.3 AccommodatingVMAChanges. AVMA can grow

or shrink during the process execution. For example, mmap
can grow an existing VMA and munmap can shrink it. When

a VMA grows, DMT-Linux expands the size of the mapped

TEA accordingly (§4.3). The TEA expansion is triggered on

VMA changes. If a VMA is shrunk, DMT-Linux reduces the

size of the corresponding TEA. As the size of a VMA gets

smaller, its mapping in a register can be replaced by the

mapping of a larger VMA.

Note that VMA operations are typically infrequent. In

our evaluation, the workloads rarely change VMAs after the

initialization. In principle, DMT trades the overhead of in-

frequent VMA-to-TEA mapping management for optimizing

frequent virtual address translations.

4.3 TEA Management
TEAs are managed by the OS (DMT-Linux). To support TEAs,

we modify the page table allocator in Linux. Currently, in

Linux, PTEs are maintained in pages allocated by the buddy

allocator [22] and last-level PTEs are randomly scattered in

the physical memory. DMT-Linux incorporates a specialized

page table allocator that allocates TEAs in physical memory

based on the VMA-to-TEA mappings. It allocates PTEs in

specific locations inside the TEAs to enable DMT.

DMT-Linux supports TEA creation, deletion, and expan-

sion. A TEA is created upon a VMA-to-TEA mapping cre-

ation. A TEA is allocated using Linux’s contiguous physical

page allocator (alloc_contig_pages) which requests con-

tiguous pages from the buddy allocator. The request could

fail if no contiguous region could be allocated, which trig-

gers a split of the VMA-to-TEA mapping. DMT-Linux also

instructs the memory allocator to defragment the memory

to resolve moveable fragmentations. A TEA is deleted by

simply freeing it upon VMA deletion.

TEA expansion is triggered either by themerging events of

VMA-to-TEA mappings (§4.2.1) or by organic VMA growth

(§4.2.3). If a TEA is expandable in place in physical mem-

ory, DMT-Linux allocates PTEs into the corresponding TEA.

Since the PTEs are allocated in the page granularity by the

Linux buddy allocator, DMT-Linux manages TEAs also in the

page granularity. If a TEA cannot be expanded in place, DMT-

Linux creates a new TEA and copies the original TEA to the

new one. DMT-Linux implements gradual migration: the new
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Figure 12. Huge page support in DMT.

TEA will be loaded into the register so the expanded VMA

can be indexed properly, while PTEs are asynchronously

moved by a background thread. During the TEA migration,

translations with PTEs that are not yet migrated will be

handled by the original x86 page table walker.

4.4 Huge Page Support
DMT supports huge pages like 2MB and 1GB pages in the

x86 architecture. With huge pages, last-level PTEs are at L2

and L3, not L1 (Figure 1). If a VMA contains pages of multiple

sizes, DMT maps the VMA to multiple different TEAs, each

containing last-level PTEs of different sizes of pages, as de-

picted in Figure 12. For example, if a VMA contains pages of

all three sizes, there will be three VMA-to-TEA mappings for

4KB, 2MB, and 1GB pages, respectively. To translate a VA in

such a VMA, the DMT fetcher issues three memory requests

in parallel to all TEAs. Since only one of the three TEAs

contains the last-level PTEs, only one PTE will be fetched.

The page size is encoded in the SZ field of the register when

storing the VMA-to-TEA mapping (Figure 13). The DMT

fetcher calculates the location of the target PTEs inside a

TEA based on the page size.

When a huge page is promoted or demoted (e.g., by Linux’s

Transparent HugePage Support, or THP), the corresponding

VMA-to-TEA mapping does not need to be changed. Only

the PTEs in the TEA will be updated. PTEs of different sizes

of pages are allocated in different TEAs.

4.5 Virtualization Support and pvDMT
DMT for virtualized memory can be supported naturally:

the OS (DMT-Linux) support in §4.2–§4.4 works seamlessly

on both the guest and the host OSes. The hardware support

includes a new set of registers that map the gVA of guest

VMAs to the gPA of the corresponding guest TEA (gTEAs).

As discussed in §3, without paravirtualization (i.e., pvDMT),

the DMT fetcher finishes the translation with three memory

references: (1) it calculates the gPA of the target gPTE using

the gVMA-to-gTEA mapping in the guest DMT registers

and then translates the gPA to the hPA of the gPTE via the

hPTE using the hVMA-to-hTEA mapping in the host DMT
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registers; (2) it fetches the gPTE and obtains the gPA of the

target data page; and (3) it finds the hPA of the target data

page via the hPTE using the hVMA-to-hTEA mapping in

the host DMT registers. In practice, the hypervisor typically

creates one VMA to represent the guest physical memory.

4.5.1 Paravirtualization. To support the paravirtualization-
based optimization (pvDMT), we need to ensure gTEAs to

be contiguous in the host physical memory (§3.1). In pvDMT,

the host allocates gTEAs for the guest and maps the allo-

cated gTEAs into the guest so that the guest can update PTEs

without exiting the VM. Guest TEA (gTEA) operations, such

as merging and splitting VMA-to-TEA mappings, thus need

to be forwarded to the host. In this way, only one VM exit

would occur when a TEA is created or updated.

DMT-Linux adds a new hypercall KVM_HC_ALLOC_TEA in
the guest OS to pass VMA-to-TEA mapping information to

the host. The host prepares contiguous physical memory re-

gions for gTEAs and, if needed, merges or splits the mapping.

It then maps the materialized mapping to the guest. The use

of a hypercall not only enables the guest to request the host

to allocate gTEAs but also allows the host to merge or split

gTEAs when the requested allocation cannot or should not

be satisfied as is. The hypercall takes an array of requested
gTEAs as input parameters and returns an array of allocated
gTEAs, in the form of a pointer to a gTEA Table that lists

the base addresses and sizes of gTEAs. It returns an empty

array if no TEA can be allocated.

The gTEA table is maintained by the host, as part of the

register state (Figure 13). It lists the base address and size of

each gTEA in the host physical address space. The table is

needed for the DMT fetcher to directly fetch the gPTE.

With pvDMT, the DMT fetcher takes two memory refer-

ences: (1) it fetches the gPTE to obtain the gPA of the target

page in the gTEA using the gVMA-to-gTEA mapping in the

guest DMT register, where the base address of gTEA in the

host physical address space can be found in the gTEA Table,

and (2) it fetches the hPTE to obtain the physical address

based on the gPA in the hTEA using the hVMA-to-hTEA

mapping in the host register.

4.5.2 Isolation. A key principle of pvDMT is to ensure

isolation between the guest and the host. The challenge is

that paravirtualization exposes the host physical memory

to the guest. Without any regulation, a malicious guest can

create a timing-based side channel by manipulating the guest

DMT register to point to an arbitrary host physical address.

Since theMMUwill read the content at the physical addresses

and consume it as a PTE, the guest can observe the timing

of the translation fault and infer the shape of the content

in the physical memory address. On the other hand, VM

exits need to be minimized—regulation cannot require every

gTEA change or context switch to trap into the host.

We address the challenge by restricting the physical mem-

ory region exposed to the guest and ensuring that a guest can

PSZReserved

gTEA ID

VMA Base VPN

TEA Base PFN

VMA Size

gTEA Table

013 212 1163

Figure 13. Organization of a DMT register. SZ stands for

“page size” and P stands for “present”. gTEA ID and gTEA

Table are used by pvDMT specifically.

only map its virtual pages to its own TEAs. The restriction is

realized by the gTEA table using a mechanism similar to Intel

EPTP Switching [32]. Basically, the host creates a gTEA table

for each guest, which tracks the physical memory regions

of the gTEAs that belong to the guest VM. The gTEA table

is read-only to the guest; any gTEA modification must go

through the KVM_HC_ALLOC_TEA hypercall. The gTEA table

maintains the base address in the host physical memory and

the size of every active gTEA for the currently running guest

VM. Each gTEA is assigned a unique ID stored in the guest

registers, as shown in Figure 13. The base address of the

gTEA table is also stored in the guest registers. Note that

this design also prevents the host physical address of TEAs

from being exposed to the guest.

During the translation, the DMT fetcher finds the corre-

sponding gTEA based on the gTEA table and the gTEA ID

from the guest DMT register. If a given gTEA ID is invalid

or an out-of-bound physical memory access is requested, a

page fault will be triggered in the host.

4.5.3 Nested Virtualization. DMT and pvDMT enable

efficient hardware-assisted address translation for nested

virtualization, which is untenable with existing translation

designs (§2.1.3). In the case of pvDMT, to support memory

translation for nested virtualization, we need a set of L2

VMA-to-TEA registers that map the L2 VA to the host physi-

cal address of the corresponding L2 TEA. The DMT fetcher

needs to support the three-step translation described in §3.2.

DMT-Linux makes the L1 hypervisor be able to identify

the destination of control messages and forward them be-

tween L0 and L2 if needed. For example, after L1 DMT-Linux

received the TEA allocation request from L2, it will create

and map TEAs for L2 on L1 physical memory, split the map-

ping if needed, and forward the updated VMA-to-TEA map-

pings to L0 for final allocation. The allocated mappings are

returned from L0 to L1 and then to L2.

4.6 Implementation
4.6.1 DMT Hardware. Figure 13 shows the layout of a

DMT register (§4.1). We have three sets of 16 registers to

support native, virtualization, and nested virtualization, re-

spectively. Each register maintains a VMA-to-TEA mapping
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using the first 192 bits. The registers can only be accessed

by the corresponding native or virtualization levels.

The P (Present) bit notifies the DMT fetcher if the VMA-

to-TEA mapping stored in the register is valid. If the P-bit

is not set, the original x86 page table walker is invoked. For

example, during the asynchronous TEA migration (§4.3), the

P-bit is not set till the migration is done.

The gTEA ID and gTEA Table fields are specific to pvDMT

and are only used in virtualized environments. The gTEA ID

is used by the guest to point to the gTEA in the gTEA table;

the gTEA table is prepared by the host. The fields may be

changed during context switches, without VM exits.

Following the current MMU design, a core can have mul-

tiple DMT fetchers corresponding to the original x86 page

table walkers. If a requested virtual memory address is not

covered by the mappings, the translation falls back to the

x86 page table walker. For virtualized memory, the DMT

fetcher performs the multi-step translation described in §4.5,

following a state machine to access the right registers.

4.6.2 DMT-Linux. We prototype DMT-Linux on top of

the Linux kernel v5.15. We implemented VMA-to-TEA man-

agement, TEA management, and virtualization support with

about 800 lines of C code.

To manage VMA-to-TEA mappings (§4.2), we hook our

management procedures into code that changes VMAs (e.g.,

mmap_region, __vma_adjust and __split_vma). The map-

pings are maintained in a red-black tree with pointers in

task_struct, similar to how VMAs are maintained.

TEAs are allocated using Linux contiguous page allocator,

alloc_contig_pages, implemented in the buddy allocator

with GFP_PGTABLE_USER (DMT is not enabled for the kernel

page table). The allocator automatically defragments mem-

ory on demand. DMT-Linux invokes __alloc_contig_pages
and free_contig_range to expand and shrink TEAs. To mi-

grate a TEA, a background worker iterates through the page

table using apply_to_existing_page_range, locking the

affected PTEs, and revising the page table to ensure the orig-

inal page walker works correctly after migration.

To support DMT for virtualization (§4.5), DMT-Linux adds

the hypercall KVM_HC_ALLOC_TEA in KVM. Upon receiving

the hypercall, the hypervisor finds guest physical memory

in the host virtual address using kvm_vcpu_gfn_to_hva and
find_vma. It allocates TEAs on behalf of the guest and maps

the allocated host physical memory to the guest physical

memory using vm_insert_pages. After themapping is done,

DMT-Linux updates the gTEA table and the gTEA ID (Fig-

ure 13) and returns the allocated mappings to the caller. In

nested virtualization, it cascades the hypercall and requests

the L0 hypervisor for the same operations.

Hardware extension (§4.1), if available, can be supported

by using mm_struct to store per-process mappings and pro-

cedures like switch_mm to load mappings to registers.

Table 2. Hardware configuration of the measurement
platform (a server machine with the x86 architecture).

Parameter Configuration

Processor Intel
®

Xeon
®

Gold 6138 @ 2.00GHz (4 CPU sockets)

Memory 64GB DDR4 2666 MT/s per socket (256GB total)

Host Kernel Linux 5.15.0

Guest Kernel Linux 5.15.0

Hypervisor QEMU/KVM

VM Memory 240 GB

Table 3. Configuration of the simulated architecture.
We set the same hardware configuration as the measurement

machine in Table 2, i.e., Intel Xeon Gold 6138 [76].

Parameter Configuration

Cores/Threads 20 cores; 20 threads

L1I TLB 128 entries, 8-way associative

L1D TLB 64 entries, 4-way associative

L2 STLB 1536 entries, 12-way associative

L1I Cache 32KB per core, 8-way associative, 4 cycles RT

L1D Cache 32KB per core, 8-way associative, 4 cycles RT

L2 Cache 1MB per core, 16-way associative, 14 cycles RT

Last-Level Cache 22MB, 11-way associative, 54 cycles RT

Main Memory 200 cycles RT

Page Walk Cache 3 levels, 2-4-32 entries per level, 1 cycle RT

Nested PWC 3 levels, 2-4-32 entries per level, 1 cycle RT

5 Methodology
We evaluate the performance of DMT and the compared

systems, following the methodology of prior work [5, 45].

We model application execution time using a combination

of real performance measurements and simulated memory

traces. The execution time on a target system is modeled as:

𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑂𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑣𝑎𝑛𝑖𝑙𝑙𝑎

×
𝑂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑡𝑎𝑟𝑔𝑒𝑡

𝑂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑣𝑎𝑛𝑖𝑙𝑙𝑎

+𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑖𝑑𝑒𝑎𝑙

where𝑂 denotes address translation overhead.𝑇𝑖𝑑𝑒𝑎𝑙 denotes

the ideal execution time assuming a perfect TLB. 𝑂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑣𝑎𝑛𝑖𝑙𝑙𝑎

and 𝑂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑡𝑎𝑟𝑔𝑒𝑡 denote the translation overhead of vanilla

Linux and the target system in a simulator, respectively. The

formula breaks down application execution time into an

ideal execution time and the page table walk overhead. As

suggested by [5], it is more accurate than directly adding

simulated translation overhead on measured execution time,

by taking into account subtle interactions between the trans-

lation hardware, CPU cores, and the OS.

We use the Linux Perf tool [52] to measure 𝑂𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑣𝑎𝑛𝑖𝑙𝑙𝑎

and

workload execution time of a real server machine, with the

configuration listed in Table 2. 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑖𝑑𝑒𝑎𝑙

is obtained by sub-

tracting translation overhead from total execution time. To

measure 𝑂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑣𝑎𝑛𝑖𝑙𝑙𝑎

and 𝑂𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒
𝑡𝑎𝑟𝑔𝑒𝑡 , we use DynamoRIO [18]

to simulate the memory hierarchy. Table 3 lists the config-

uration of the simulated system. We implement different

translation designs including DMT and the related systems

on the simulator. The simulator runs the application memory
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Table 4. Benchmarks used in the evaluation.

Name Description

Redis [62]

In-memory key-value store (working-set: 155 GB)

512M 256B records, 30M operations, 100% reads

Memcached [48]

In-memory key-value store (working-set: 95 GB)

100M 1KB records, 10M operations, 100% reads

GUPS [27]

Random memory accesses (working-set: 128 GB)

128 GB dataset, 1B operations, 100% updates

BTree [51]

Data structure evaluator (working-set: 125 GB)

1.5B keys, 70M operations, 100% lookups

Canneal [13]

Chip design optimizer (working-set: 62 GB)

100M elements, 150K swaps/step, 2K start temp.

XSBench [71]

Monte Carlo simulator (working-set: 84 GB)

170K gridpoints per nuclide, 4M particle histories

Graph500 [24]

Graph analysis benchmark (working-set: 123 GB)

27 scale, 32 edge factor, 4 iterations

traces (≥ 2 billion instruction level trace) and measures the

simulated overheads. The simulator also reports the average

page table walk latency of the target systems.

For nested virtualization, since DMT eliminates the need

for shadow paging, we need to remove the shadow paging

overhead (𝑂𝑛𝑒𝑠𝑡𝑒𝑑
𝑠ℎ𝑎𝑑𝑜𝑤

) from 𝑇𝑡𝑜𝑡𝑎𝑙 . However, it is hard to pre-

cisely measure 𝑂𝑛𝑒𝑠𝑡𝑒𝑑
𝑠ℎ𝑎𝑑𝑜𝑤

. Inspired by [20], we run the bench-

marks with hardware-assisted translation and with shadow

paging on single-level virtualization andmeasure𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒
𝑡𝑜𝑡𝑎𝑙

re-

spectively. The difference of themeasured𝑇𝑡𝑜𝑡𝑎𝑙 tells the over-

head of shadow paging over hardware-assisted translation.

Since shadow paging overhead is mainly caused by VM exits,

we estimate the overhead in nested virtualization by scaling

the overhead measured in single-level virtualization based

on the ratio of VM exits, i.e., 𝑂𝑛𝑒𝑠𝑡𝑒𝑑
𝑠ℎ𝑎𝑑𝑜𝑤

= 𝑂
𝑠𝑖𝑛𝑔𝑙𝑒

𝑠ℎ𝑎𝑑𝑜𝑤
× 𝑁𝑛𝑒𝑠𝑡𝑒𝑑

𝑁 𝑠𝑖𝑛𝑔𝑙𝑒 .

Note that this is an underestimation because VM exits are

known to be more expensive in nested virtualization [11].

Benchmarks. Our evaluation uses a diverse set of appli-

cation benchmarks (Table 4). These benchmarks have differ-

ent characteristics of memory access patterns and page table

walks (Figure 4), allowing us to comprehensively analyze

the performance of DMT and related translation designs.

6 Evaluation
In the evaluation, we measure the performance of DMT (in-

cluding pvDMT), in terms of (1) page table walk latency and

(2) application execution time. The measurement is done

both with and without enabling Linux’s Transparent Huge

Page (THP). We use the vanilla Linux/KVM on the x86-64

architecture as our baseline system (§2) to understand the

speedup DMT brings. We compare DMT and pvDMT with

four recent translation designs as our references: ECPT [64],

FPT [59], Agile Paging [20], and ASAP [45].

We also measure the overhead of DMT incurred by OS

work for managing VMA-to-TEA mapping, TEAs, as well as

extra memory due to the eager allocation of TEAs (§6.3).
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Figure 14. Speedup of page table walk and application
execution in (a) 4KB and (b) THP of DMT and other
advanced translation designs over baseline (Linux on
x86) in a native environment.

6.1 DMT Performance over Baseline
DMT significantly outperforms the baseline in native (§6.1.1),

single-level virtualization (§6.1.2), and nested virtualization

(§6.1.3) environments. The DMT registers cover 99+% trans-

lation requests in all three environments. We discuss how

DMT compares to other advanced designs in §6.2.

6.1.1 Native. Figure 14 shows the speedups of page table
walk and application execution time across the benchmarks

in the evaluated systems in the native environment. On av-

erage, DMT offers a speedup of 1.28x in page table walk and

1.05x in application execution time over the baseline, if only

4KB pages are used (Figure 14a). With THP, DMT offers an

average speedup of 1.46x in page table walk and 1.05x in

application execution time (Figure 14b).

The performance improvement is attributed to DMT’s sav-

ing of sequential fetching multiple higher-level PTEs. THP

further enlarges the benefits of DMT, because it reduces the

ratios of fetching the last-level PTEs from main memory
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Figure 15. Speedup of page table walk and applica-
tion execution in (a) 4KB and (b) THP of DMT and
pvDMT and the other advanced designs over baseline
(Linux/KVM on x86) in a virtualized environment.

and amplifies the effect of skipping page table walk. We will

observe this behavior even more in the virtualized environ-

ments in §6.1.2 and §6.1.3.

6.1.2 Virtualization. DMT, especially pvDMT, leads to

more substantial performance improvements in virtualized

environments. Figure 15a shows that DMT exhibits a speedup

of 1.41x in page table walk and 1.15x in application execution

time if only 4KB pages are used; with pvDMT, the speedup

of page table walk is 1.58x and the speedup of application

execution time is 1.20x. With THP, DMT speeds up page

table walk by 1.55x and application execution time by 1.12x

(Figure 15b). With pvDMT, the speedup of page table walk is

1.65x and the speedup of application execution time is 1.14x.

Note that DMT/pvDMT with THP has larger speedups of

a page table walk latency but lower in application execution

time than without THP, because with THP page table walk

overhead is much reduced in the baseline.
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Figure 16. Breakdown of nested page table walks. The
top number is the average cycles of accessing a PTE. The bot-

tom number is the proportion of time spent on each PTEwith

regard to average page table walk latency. pvDMT fetches

only two PTEs (highlighted).

Figure 16 breaks down the page table walk overhead of

pvDMT in Redis (Table 4). For 4KB pages (Figure 16a), last-

level PTEs are less cached. By directly fetching the last-level

PTEs, pvDMT reduces the average page table walk latency

to 66% (33%+ 33%) of the baseline. With THP, last-level PTEs

are better cached, hence lower cost to fetch (Figure 16b). As

a result, pvDMT reduces the page table walk latency to 71%

(35% + 36%) of the baseline. Other workloads show similar

characteristics. For example, in Canneal, pvDMT reduces

the page table walk latency to 76% (38% + 38%) and 69%

(37% + 32%) of the baseline for 4KB pages and THP respec-

tively. Compared to Redis, in Canneal, 2MB PTEs are more

effectively cached (and thus cheaper to access); therefore,

with THP, pvDMT’s reduction of page table walk latency

over the baseline is larger than 4KB pages. In summary, even

in the cases where last-level PTEs are cached, DMT/pvDMT

still brings substantial benefits.

Different workloads differ in memory access patterns. De-

spite for most workloads, last-level PTEs are rarely cached

during page table walks, the caching patterns of higher-level

PTEs are different. Since DMT eliminates the cost of fetching

higher-level PTEs, the effect of the removal is different. This

leads to the difference in speedups of page table walk latency.

For workloads with access patterns that enable effective PTE

caching (e.g., Graph500), DMT mostly saves accesses to the

caches. Since the last-level PTEs are better cached, accesses

to them cause low latency and lead to a higher speedup in

page table walk latency for DMT. For workloads with ac-

cess patterns that are hard to cache (e.g., Redis with a large

working set), DMT saves accesses to main memory as well

as CPU caches. In this case, though the speedup is lower for

these workloads, the absolute saving is higher.

6.1.3 Nested Virtualization. DMT/pvDMT is the first

hardware-assisted translation design for nested virtualiza-

tion. We measure performance improvements of pvDMT

over the baseline, Nested KVM.
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Figure 17. Speedup of page table walk and application
execution in (a) 4KB and (b) THP of pvDMT over the
baseline (Nested KVM).

Figure 17a shows that pvDMT speeds up application exe-

cution of the baseline by 1.48x on average if only 4KB pages

are used. pvDMT’s page table walk is only slightly faster

(1.02x on average) than the baseline because the baseline

uses shadow paging to avoid three-dimensional page table

walks. As last-level PTEs are harder to cache, pvDMT takes

three sequential memory accesses in most of the cases. Mean-

while, since pvDMT eliminates the shadow paging overhead

caused by VM exits (§2.1.3), it significantly improves end-to-

end performance.

With THP, pvDMT greatly outperforms the baseline even

in terms of page table walk overhead, despite its need to

translate one more level than shadow paging, because the

PTEs are effectively cached. As shown in Figure 17b, with

THP, pvDMT speeds up page table walk by 1.11x and appli-

cation execution by 1.34x on average.

6.2 Comparison with Other Advanced Designs
Figures 14 and 15 show detailed comparisons of DMT/pvDMT

with the other advanced designs (ECPT [64], FPT [59], Agile

Paging [20], and ASAP [45]) in the native and virtualized

environments. Table 5 summarizes the results, showing that

DMT/pvDMT outperforms the state of the arts.

6.2.1 Translation Designs. Table 6 lists the number of

sequential memory references of these different designs. We

comparatively discuss each design with DMT/pvDMT, with

a focus on virtualized environments.

ECPT [64, 66] also directly fetches PTEs using cuckoo

hashing. We did not expect DMT (without pvDMT) to out-

perform ECPT in native or virtualized environments, because

they take the same number of sequential memory accesses.

Instead, DMT can be viewed as a design to achieve ECPT

Table 5. DMT/pvDMT’s speedups of a page table walk
over other advanced designs (§6.2). pvDMT is used for

comparisons in Virtualized (4K/THP). The values are the

geometric means.

Environment FPT ECPT Agile Paging ASAP

Native (4KB) 1.04x 1.03x N/A 1.06x

Native (THP) 1.18x 1.17x N/A 1.23x

Virtualized (4KB) 1.22x 1.16x 1.21x 1.31x

Virtualized (THP) 1.49x 1.25x 1.34x 1.51x

Table 6. The number of sequential memory accesses of
other translation designs in different environments.

Design Native Virtualization Nested Virt.

pvDMT 1 2 3
ECPT 1 3 N/A

FPT 2 8 N/A

Agile Paging N/A 4–24 N/A

ASAP 4 24 N/A

performance with x86 compatibility. Interestingly, our eval-

uation shows that DMT, even without pvDMT, brings non-

trivial improvements over ECPT in both native and virtual-

ized environments. The reasons are: (1) compared with ECPT,

DMT does not spend cycles on hash calculations and cuckoo

walk cache lookup, and (2) DMT issues much fewer parallel

lookups compared with ECPT. pvDMT further reduces the

number of sequential memory references from three to two.

On average, pvDMT outperforms Nested ECPT [66] in terms

of page table walk latency by 1.16x (1.25x with THP).

FPT [59] flattens page tables by merging adjacent page

table levels. Specifically, it merges L4 with L3 and L2 with L1,

reducing memory references from four to two in a native en-

vironment. In a virtualized environment, FPT requires eight

sequential memory references for each two-dimensional

page table walk. pvDMT outperforms FPT in terms of page

table walk latency by 1.22x (1.49x with THP) on average.

Agile Paging [20] combines nested paging and shadow

paging to accelerate translation in virtualized systems. It

starts with the shadow page table for the higher levels of the

radix page table and switches to nested paging for the lower

levels of the page table. Compared to pvDMT, Agile Paging

requires many more memory references for a translation.

On average, pvDMT outperforms Agile Paging in terms of

page table walk latency by 1.21x (1.34x with THP).

6.2.2 PTE Prefetching. DMT corroborates ASAP [45] in

terms of the hardware extension and PTE management by

the OS. DMT shows that optimizing the translation leads

to significant benefits even when PTEs are prefetched into

the caches, because sequentially fetching them one by one

is still expensive, especially in virtualized environments.

In a virtualized environment, pvDMT outperforms ASAP

by 1.31x (1.51x with THP) in terms of page table walk latency

on average. Despite L1 and L2 entries being prefetched in
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ASAP, a translation still takes a two-dimensional walk to

sequentially fetch all the 24 PTEs. Moreover, the nature of

nested page table walk inevitably creates a dependency chain

of PTEs that cannot be prefetched in parallel (e.g., a host page

table walk is required to resolve the hPA of a gPTE). Hence,

if both host and guest PTEs are not cached, ASAP needs to

fetch PTEs sequentially, taking hundreds of cycles. Lastly,

ASAP may also pollute CPU caches.

6.3 DMT Overhead
DMT’s runtime overhead mainly comes from OS work for

managing VMA-to-TEA mappings (§4.2) and TEAs (§4.3).

The management operations are mostly triggered by VMA

creation and updates. In evaluated workloads, dynamic VMA

changes are rare and VMA creation is mostly done at appli-

cation initialization time. DMT makes the right tradeoff to

optimize frequent memory address translation with infre-

quent overheads of VMA operations.

To quantify DMT’s runtime overhead on real machines,

we run DMT-Linux without hardware support. Specifically,

we create a highly fragmented memory (using a fragmen-

tation tool in [40] with a free memory fragmentation index

of 0.99). Fragmentation increases DMT overhead. We record

the execution time of all the management procedures during

workload execution. Redis shows the largest overhead and it

only adds on average 12ms, 120ms, and 598ms to application

execution time in native, virtualized, and nested virtualized

environments. Such overheads are negligible with regard to

the application execution time (thousands of seconds).

We also measure hypercall overhead in pvDMT, using a

microbenchmark that requests different sizes of TEAs. The

TEA allocation time is 13.27 ms, 23.73 ms, and 48.07 ms

in a virtualized environment and 15.67 ms, 24.55 ms, and

54.87 ms in nested virtualization, for 50 MB, 100 MB and 200

MB TEAs, respectively. The hypercall overhead (excluding

memory allocation) is 1.88 𝜇s in a virtualized environment

and 10.75 𝜇s in nested virtualization, incurred by the context

switch (VM exit) and running KVM hypercall handling code.

DMT consumes extra memory space as it eagerly allo-

cates memory space for TEAs. But, the extra memory space

is negligible (<2.5% of the baseline). Specifically, in our ex-

periments, DMT and Linux/KVM consume 247.2 MB and

241.3 MB of space to store page tables on average, respec-

tively. Note that VMAs are created for in-use virtual memory

regions, and most of them will be accessed.

DMT’s hardware extension requires additional power and

on-chip space. We use CACTI [8] with 22 𝑛𝑚 technology

to estimate its hardware cost. DMT consumes an additional

4.87𝑚𝑊 of leakage power and adds 0.03𝑚𝑚2
extra on-chip

space per MMU. The overheads are marginal based on the

fact that the Thermal Design Power of the modeled CPU,

Intel Xeon Gold 6138, is 125𝑊 [31] and its die size is 694

𝑚𝑚2
[78] with 14 𝑛𝑚 technology.

7 Discussion and Limitations
Assumptions. DMT assumes that a handful of VMAs or

VMA clusters with small bubbles can effectively cover the

working set of data-intensive applications. We validate this

assumption in §2.3 using various applications and bench-

marks. New memory allocators like TCMalloc [21] would

further bring down the number of VMAs by coalescing. How-

ever, applications with highly fragmented VMAs may not

benefit greatly from DMT, if a few registers cannot encode

the working set effectively. In such cases, more translations

will fall back to the original x86 page table walks. DMT

also assumes that VMAs are updated infrequently after cre-

ation. DMT targets data-intensive workloads. Such work-

loads do not have frequent VMA updates—they typically

allocate memory at the initialization time [10, 25, 45]. Cer-

tainly, it is possible that specific workloads change VMAs

frequently; such workloads may not benefit from DMT.

Paravirtualization. The use of paravirtualization (i.e.,

pvDMT) effectively optimizes DMT for virtualized environ-

ments. However, it has several known shortcomings. Besides

the hypercalls overhead, paravirtualization requires both the

guest and the host to support DMT-Linux; otherwise, DMT

falls back to the original x86 radix-based translation. If the

hardware extension is adopted and available, we hope that

DMT-Linux can be upstreamed to Linux/KVM.

Contiguity requirement of TEA. TEAs need contigu-
ous physical memory space. Despite TEAs being orders of

magnitude smaller than VMAs (e.g., a 200MB TEA is needed

for 100GB data with 4KB pages), memory contiguity could be

scarce in long-running servers [79]. Recent work [85] shows

that by isolating unmovable regions, 1GB contiguity can be

commonly allocated. Also, new contiguity-aware allocation

and de-fragmentation mechanisms are developed [77]. We

expect the megabyte-level contiguity of TEA to be acceptable.

DMT splits TEAs when contiguity cannot be found.

Eager TEA allocation. DMT eagerly allocates physical

memory for TEAs and might waste space compared to the

lazy allocation of x86. Our evaluation shows that the ex-

tra memory space is negligible (§6.3). However, there exist

workloads where eager allocation can be more wasteful, e.g.,

mmapping a 1TB file to memory but accessing a small por-

tion of it. For such workloads, more advanced TEA allocation

policies can be employed, e.g., on-demand allocation of small-

sized TEAs with dynamic expansion. As TEA allocation is

done by the OS, the policy can be decided as per workloads.

8 Related Work
Accelerating address translation. DMT is inspired by

prior work on redesigning memory translation to reduce its

overhead [3–5, 10, 12, 20, 23, 26, 54, 59, 64, 66–68, 70, 75, 80].

We compare the performance of DMTwith the recent designs
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in §6.2 and show that DMT/pvDMT can further reduce mem-

ory translation overhead. At a high level, DMT differs from

prior work with two main design principles: (1) co-designing

memory translation hardware with OS memory manage-

ment, which greatly simplifies the design and is transparent

to user applications, and (2) avoiding disruptive changes to

the existing architecture and using backward compatible

designs to achieve minimized overhead.

Huge page. Using huge pages to improve TLB coverage

and shorten page table walks is practical and often only in-

volves software changes [29, 35, 36, 40, 43, 53, 55–57]. How-

ever, huge pages cannot fundamentally address the transla-

tion overhead as it is less scalable and cannot eliminate all

the sequential page table walks. DMT is complementary to

and can benefit from huge pages, as shown in our evaluation.

Translation caching and prefetching. Prior work re-

duces translation overhead by using PTE prefetching [45]

and caching [9, 25, 63]. As we discuss in §6.2.2, prefetch-

ing and caching can further unleash the power of DMT by

bringing PTEs into the caches in advance. Specifically, some

building blocks of DMT are compatible with PTE prefetchers,

specifically ASAP [45]. We believe that a unified infrastruc-

ture to support both prefetching and DMT is viable.

TLB efficiency. Prior work has greatly improved TLB

efficiency [6, 10, 19, 33, 34, 38, 58, 60, 61]. However, as TLB

capacity does not increase at the rate asmemory capacity and

irregular memory access patterns of emerging workloads,

off-TLB translation efficiency is increasingly relevant.

9 Concluding Remarks
We set to explore a practical address translation design for

minimizingmemory translation overhead in virtualized cloud

environments. We settled with Direct Memory Translation

(DMT), a hardware-software extension that directly fetches

the last-level page table entries containing the translation

while maintaining backward compatibility with x86-based

virtual memory. DMT makes us believe that an incremental

path towards highly efficient virtual memory is viable, even

for virtualized environments including nested virtualization.
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A Artifact Appendix
A.1 Abstract
The DMT artifact was implemented based on Linux 5.15.127,

and was developed and tested on Ubuntu 20.04.3 LTS. The

artifact includes the Linux kernel with DMT support, the

simulator, peformance benchmarks, and experiment scripts.

We have used the artifact to reproduce the evaluation results

presented in the paper.

A.2 Artifact check-list (meta-information)
• Howmuch time is needed to prepareworkflow?: Around
3 hours.

• How much time is needed to complete experiments?:
Around 72 hours.

• Publicly available?: Yes.
• Code licenses?: GNU GPL v2.0 with Linux Syscall Note and

Apache License 2.0.

• Archived?: Yes. https://doi.org/10.5281/zenodo.10681636

A.3 Description
A.3.1 How to access. The DMT prototype and other arti-

facts are available at: https://github.com/xlab-uiuc/dmt

A.3.2 Hardware dependencies. The artifact requires at
least 192 GB of physical memory and 1.5 TB of free disk

space. The CPUs must have nested paging support.

A.3.3 Software dependencies. TheDMT artifact is tested

on a server machine with Ubuntu 20.04.3 LTS on Linux 5.15

with DMT support. In principle, the artifact can run on any

Linux distribution; however, it would require modifications

of the experiment scripts.

A.3.4 Data sets. Themethod to obtain data sets is included

in our artifact GitHub repo, located at https://github.com/
xlab-uiuc/dmt/blob/master/datasets/README.md

A.4 Installation
For instructions to install the artifact, please refer to the

following files in our GitHub repository: https://github.com/
xlab-uiuc/dmt/blob/master/README.md

We also provide a guide on setting up virtual machines:

https://github.com/xlab-uiuc/dmt/blob/master/vm.md

A.5 Evaluation and expected results
For instructions to run the artifact, please refer to the follow-

ing file in our GitHub repository: https://github.com/xlab-
uiuc/dmt/blob/master/README.md

Additionally, you may refer to the following file for a min-

imal working example: https://github.com/xlab-uiuc/dmt/
blob/master/minimal.md

A.6 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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